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Random walk for interacting particles on a Sierpinski gasket
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The random motion for an arbitrary number of particles is numerically studied on a finitely ramified
Sierpinski gasket with the restriction that no two particles can occupy the same site. We find that the
long time behavior of a “tagged particle” in the presence of others is the same as that of a noninteracting

. 2/d
one, ie., (ri(t))~t v

, where d,=2.322 is the fractal dimensionality of the path of a single random

walker in the gasket. This is contrary to the results for a one-dimensional (1D) chain where the presence
of the interaction markedly alters the motion of the walkers. However, the collective displacement for
all the particles undergoes normal diffusion, as on a 1D chain, with a characteristic length
(|AR|?*)~1 —p, where p is the density of particles per site. We have shown that this should be true in
general for all random walks in regular and self-similar fractal lattices.

PACS number(s): 05.40.+j, 02.70.Lq

It is well known for a regular lattice in integer dimen-
sions the mean-square displacement of a random walker
is proportional to time (Fick’s Law) [1]. More generally,
it is expressed as

(PAp)) ~12 % (1)

where d,, is the dimension for the random walk. For a
regular lattice d,, =2, hence (r(¢)?) ~t. For lattices with
fractal dimensions the diffusion becomes anomalous, be-
cause d,, takes values greater than 2. While the random
walk for a single particle in fractal dimensions is well
studied, almost nothing is known when many interacting
particles are present. For the case of a one-dimensional
(1D) chain, Richards [2] numerically studied:the hopping
motion of an arbitrary number of random walkers, for-
bidding their double occupancy on a given site. It turned
out that the introduction of an interaction among parti-
cles through this excluded volume effect drastically al-
tered the random motion of a tagged particle in the pres-
ence of others. Instead of {(r%(z)) ~t, the behavior of a
tagged particle becomes {r2(¢)) ~t!/% but the displace-
ment for all the particles (R?%(t)) still maintains the
linear behavior in time. Although the large time
behavior can be derived analytically from a multiple
scattering equation [3,4], a very simple but transparent
derivation was given by Alexander and Pincus [5], where
they argued that the long-time behavior is dominated by
density fluctuations leading to the ¢!/ dependence of the
mean-square deviation. It’s also believed that in two di-
mensions the diffusion of a single particle in the presence
of others is normal [6], thereby motivating further studies
of the random walk problem in a fractal dimension which
lies between 1 and 2.

In this paper we study the random walk of interacting
particles by disallowing their double occupancies on a
finitely ramified two-dimensional (2D) Sierpinski gasket.
A Sierpinski gasket is a self-similar fractal. Its study has
become very popular since a decade ago when it was sug-
gested that it could be viewed as a backbone lattice of a
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percolating cluster [8]. Many linear problems have al-
ready been studied using exact renormalization group
techniques [9]. Unfortunately, an exact solution is
difficult, if not impossible, for many interacting particles
executing random walks on the gasket. Here we resort to
numerical methods to study a few properties of many in-
teracting particles. Our results show that in a Sierpinski
gasket, the random walk of a tagged particle is very
different compared to what happens in one dimension.
At long times an interacting particle begins to behave like
a noninteracting one. We have also established a general
property of the collective displacement of all the parti-
cles; it is always normal on a regular, or on a self-similar
fractal lattice.

Before proceeding further, let us recapitulate a few
things about a Sierpinski gasket. As shown in Fig. 1, a
Sierpinski gasket [7] is generated starting with a triangle,
breaking it into four equal smaller triangles, and then
taking away the inner one. The process is repeated for
each triangle, so generated to produce smaller triangles at
the next stage of iteration. Hence its fractal dimension
d is given by 2 =3 or d;=In3/In2=1.585. The total
number of trlanﬁlles after N iterations is 3V, the number
of sites being (3 *1'+3) /2. The linear dimension of the
gasket is given by 2V. The spectral dimension d; of a

FIG. 1. Geometry of a Sierpinski gasket. The particles are
not allowed to move into the shaded regions.
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fractal lattice is given by d;=2d,/d,, [10]. Along with
Eq. (1), a single random walker in a 2D Sierpinski gasket
also satisfies the following equation:

Se()~t5"% @)

where S,(¢) is the number of distinct sites visited. The
values of d,, and d; are given by 2.322 and 1.365, respec-
tively.

In our work, we have chosen the value of N to be 7.
This gives a gasket of length 128 and with a total number
of 3282 sites. With a gasket of this size it is possible to
study random walks up to 600 time steps without en-
countering boundary effects. We have checked our re-
sults for N =5 with that N =7 at a fixed density of parti-
cles, up to 100 time steps. The convergence is extremely
good. The sites on a gasket are labeled with two integers
n and m, such that the Cartesian components of the vec-
tor r(n,m) are given by (n +m /2) and (V'3/2)m, respec-
tively. We apply the standard method of tossing a coin to
study the random walk. Initially, the particles are distri-
buted randomly on different sites of the gasket. A nearest
neighbor of a given particle is chosen by generating a ran-
dom number. If the neighboring site is empty then the
move is accepted, otherwise the particle stays in its origi-
nal site.

For the sake of clarity, a “tagged particle” will refer to
the motion of a particular particle in the presence of oth-
ers with the excluded volume interaction, whereas a “sin-
gle particle” would refer to a particle without any other
particles on the gasket. The quantities that have been
calculated in this paper are as follows: (i) the root-mean-
square distance

nl’

<r2(r>>=i<zr,?<t>), 3)
Mp \e=1

where n, represent the total number of particles; (ii) the

number of distinct sites S (¢) visited by a tagged particle;

and (iii) the root-mean-square displacement of the collec-

tive coordinate R=r,+r,+ - - - +r,,p,

(R¥t))=(|r,+1,)+ - -~ +r,,p|2) . 4

For a single particle executing a random walk the root-
mean-square displacement and the number of distinct
sites visited are denoted by {r3(¢)) and S(¢), respective-
ly. The density of the particles is chosen to be 0.5 to fa-
cilitate faster convergence. In Fig. 2(a) we have plotted
(r3(t)),{r%t)),{R*t)) as a function of time on a log-
log plot. At long time the slopes of the two lines (the top
and the bottom one) become parallel. It is easier to see it
if one plots In({r%(z)))—In({r3(¢)))~In(t), which is
shown in Fig. 2(b). If the behavior of (r%(¢)) and
(r3(t)) have different powers of time, {r%*(¢))~t® and

(r3(6)) ~t™ (ay=2/d,=0.8613), say, then
In({r3())—In({r¥(#)))~(ay—a)n(z) . (5)

The fact that, at long time, the slope becomes zero im-
plies that the exponent a eventually approaches a.
Hence the motion of the tagged particle at long time is

characterized by the same exponent as that of a single
particle. In Fig. 3(a) we have shown the number of dis-
tinct sites as a function of time for a tagged particle (bot-
tom) and a single particle (top), respectively. Figure 3(b)
shows the difference In[S(#)]—In[S,(¢)]~In(¢). It also
shows similar behavior. If S (z)~t%, then in the long time
limit B asymptotically takes the value d;/d,,, the same as
that of a single particle.

On the contrary, the motion of the sum of the coordi-
nates of all the particles R is the same as that for the 1D
lattice. Figure 2(a) also shows the temporal behavior of
In{R%(t)) (the middle one). Notice that the slope for
(RXt)) increases continuously. If we assume that
(R%(t)~t?, then In{r3(t))—In{R%())~(ag—y)In(z).
The bottom curve of Fig. 2(b) shows the behavior of this
expression as a function of In(z). Notice that unlike the

(a)

0 1.3 2.6 3.9 5.2 6.5

,,,,,,,,,,,,,

086 | 1
072 | .

0.58 + B

0.44 | 4

0.3 1 ! ! 1 ! 1 il 1

In(t)

FIG. 2. (a) {r3(z)) (top), {r*(¢)) (bottom), and {R%(¢)) (mid-
dle) as a function of ¢ on a log-log scale. (b)
In{r3(2)) —In{r*%(¢)) (top) and In{r3(z)) —In{R%(¢)) (bottom)
as a function of In(¢).
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top curve it decreases as a function of time, implying that
the coefficient y>a, We argue that eventually
(R%(t))~t (i.e., y—1) and this result is true in general,
for all self-similar fractal and regular lattices. Let us es-
tablish it in case of a 2D Sierpinski gasket first. The
proof follows from the fact that if the coordinates
(ny,m),(ny,m,), "',(n,,p,m,,p), representing the posi-
tion of random walkers are located on the fractal lattice,
it is easy to check that the vector,

+m, ), (6)

P

R=(n;+n,+ --- +n,,p;m1+m2+

is located on the underlying triangular lattice but not
necessarily on the fractal lattice. One can also see it pic-
torially from Fig. 1. This is because the vector R might
very well fall into the shaded region of Fig. 1, where indi-
vidual particles are not allowed. Therefore the vector R
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FIG. 3. (a) In{S,(¢)) (top) and In{S(#)) bottom as a function
of In(z). (b) In{Sy(¢)) —In{S(z)) as a function of In(z).
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FIG. 4. A typical spread of |AR|? as a function number of
number of iteration after being sorted in an increasing order of
magnitude.

executes a random motion on a triangular lattice. Hence
the motion is normal, and therefore linear in time. One
notices that nothing special about a Sierpinski gasket is
needed for the proof. Therefore the result should be valid
in general for all self-similar fractals.

We have also explored properties of the vector R nu-
merically, which would be consistent if the above argu-
ment were true. For example, let us consider the follow-
ing quantity:

(JAR]?)=(|R(t +1)—R(1)|?) . @)

Since the vector R is a sum of random moves for all
the particles, and we just proved that it is spanning a reg-
ular triangular lattice, the average jump would than only
depend on the available volume fraction 1—p, where p is
the average number of particles per site. Hence it is ex-
pected that {|AR|?) would show a peak at this charac-
teristic distance, depending on the density and decrease
rapidly beyond that. Also, since any two successive
moves are uncorrelated, {(|AR|?) would be invariant
with respect to time. In Fig. 4 we have shown |AR|? for
different realizations after sorting them in increasing or-
der of their magnitudes. We have checked numerically at
several different times that {(|AR|?) ~1—p. This is con-
sistent at the two extreme limits. In the first case when
there is only one particle present, in the thermodynamic
limit (|AR|?) should be exactly unity; in the other ex-
treme, when the number of particles approaches the num-
ber of sites { |AR|?) should approach zero.

In summary, we have numerically investigated the ran-
dom walk of interacting particles on a finitely ramified
Sierpinski gasket. The behavior of a tagged particle
asymptotically becomes the same as that of a single parti-
cle. Similar behavior is expected for other lattices with
fractal dimensions greater than 1. In other words, we be-
lieve that one dimension is special. We have also shown
that the collective displacement of all the particles is as in
normal diffusion and argued that this should be true for
all regular and self-similar fractal lattices.



49 RANDOM WALK FOR INTERACTING PARTICLESON A ... 4949

I am indebted to Professor Jayanth Banavar, Professor
Amos Maritan, and Dr. S. N. Majumdar for many dis-
cussions. I also thank Professor J. B. Anderson for his
encouragement and support. This research has been sup-
ported by the National Science Foundation (Grant No.

CHE-8714613) and by the Office of Naval Research
(Grant No. N00014-92-J-1340). The computer support
from the Pennsylvania State University is also gratefully
acknowledged.

[1] For a review, see S. Havlin and D. Ben-Abraham, Adv.
Phys. 36, 695 (1987); also see S. N. Majumdar and M. Bar-
ma, Physica A 177, 367 (1991); Phys. Rev. B 44, 5306
(1991).

[2] Peter M. Richards, Phys. Rev. B 16, 1393 (1977).

[3] D. L. Huber, Phys. Rev. B 15, 533 (1977).

[4] Peter A. Fedders, Phys. Rev. B 17, 40 (1978).

[5] S. Alexander and P. Pincus, Phys. Rev. B 18, 2011 (1978).

[6] Lo Russo et al. (unpublished).

[7] B. B. Mandelbrot, The Fractal Geometry of Nature (Free-
man, San Francisco, 1977); Fractals: Form, Chance and
Dimension (Freeman, San Francisco, 1977).

[8] Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpa-
trick, Phys. Rev. Lett. 47, 1771 (1981).

[9] See, for example, Jayanth R. Banavar and Marek Cieplak,
Phys. Rev. B 28, 3813 (1983).

[10] S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43,
L625 (1982).



